Health impact assessment of particulate pollution in Tallinn using fine spatial resolution and modeling techniques
نویسندگان
چکیده
BACKGROUND Health impact assessments (HIA) use information on exposure, baseline mortality/morbidity and exposure-response functions from epidemiological studies in order to quantify the health impacts of existing situations and/or alternative scenarios. The aim of this study was to improve HIA methods for air pollution studies in situations where exposures can be estimated using GIS with high spatial resolution and dispersion modeling approaches. METHODS Tallinn was divided into 84 sections according to neighborhoods, with a total population of approx. 390,000 persons. Actual baseline rates for total mortality and hospitalization with cardiovascular and respiratory diagnosis were identified. The exposure to fine particles (PM2.5) from local emissions was defined as the modeled annual levels. The model validation and morbidity assessment were based on 2006 PM10 or PM2.5 levels at 3 monitoring stations. The exposure-response coefficients used were for total mortality 6.2% (95% CI 1.6-11%) per 10 microg/m3 increase of annual mean PM2.5 concentration and for the assessment of respiratory and cardiovascular hospitalizations 1.14% (95% CI 0.62-1.67%) and 0.73% (95% CI 0.47-0.93%) per 10 microg/m3 increase of PM10. The direct costs related to morbidity were calculated according to hospital treatment expenses in 2005 and the cost of premature deaths using the concept of Value of Life Year (VOLY). RESULTS The annual population-weighted-modeled exposure to locally emitted PM2.5 in Tallinn was 11.6 microg/m3. Our analysis showed that it corresponds to 296 (95% CI 76528) premature deaths resulting in 3859 (95% CI 10236636) Years of Life Lost (YLL) per year. The average decrease in life-expectancy at birth per resident of Tallinn was estimated to be 0.64 (95% CI 0.17-1.10) years. While in the polluted city centre this may reach 1.17 years, in the least polluted neighborhoods it remains between 0.1 and 0.3 years. When dividing the YLL by the number of premature deaths, the decrease in life expectancy among the actual cases is around 13 years. As for the morbidity, the short-term effects of air pollution were estimated to result in an additional 71 (95% CI 43-104) respiratory and 204 (95% CI 131-260) cardiovascular hospitalizations per year. The biggest external costs are related to the long-term effects on mortality: this is on average euro 150 (95% CI 40-260) million annually. In comparison, the costs of short-term air-pollution driven hospitalizations are small euro 0.3 (95% CI 0.2-0.4) million. CONCLUSION Sectioning the city for analysis and using GIS systems can help to improve the accuracy of air pollution health impact estimations, especially in study areas with poor air pollution monitoring data but available dispersion models.
منابع مشابه
Author ' s response to reviews Title : Health impact assessment of particulate pollution in Tallinn using fine
متن کامل
Estimation of exposure to fine particulate air pollution using GIS-based modeling approach in an urban area in Tehran
In many industrialized areas, the highest concentration of particulate matter, as a major concern on public health, is being felt worldwide problem. Since the air pollution assessment and its evaluation with considering spatial dispersion analysis because of various factors are complex, in this paper, GIS-based modeling approach was utilized to zoning PM2.5 dispersion over Tehran, du...
متن کاملThe contribution of motor vehicle emissions to ambient fine particulate matter public health impacts in New York City: a health burden assessment
BACKGROUND On-road vehicles are an important source of fine particulate matter (PM2.5) in cities, but spatially varying traffic emissions and vulnerable populations make it difficult to assess impacts to inform policy and the public. METHODS We estimated PM2.5-attributable mortality and morbidity from on-road vehicle generated air pollution in the New York City (NYC) region using high-spatial...
متن کاملAir quality resolution for health impact assessment: influence of regional characteristics
We evaluate how regional characteristics of population and background pollution might impact the selection of optimal air quality model resolution when calculating the human health impacts of changes to air quality. Using an approach consistent with air quality policy evaluation, we use a regional chemical transport model (CAMx) and a health benefit mapping program (BenMAP) to calculate the hum...
متن کاملHealth impact assessment of particulate matter in Sanandaj, Kurdistan, Iran
Air pollution is a major environmental issue in all regions of the world. We aimed to assess the health impacts of particulate matter with an aerodynamic diameter 10 µm (PM10) in Sanandaj, Kurdistan, Iran. The air pollution data were obtained from Sanandaj Department of Environment Protection. The annual mortality and morbidity, including cardiovascular and respiratory diseases attributable to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2009